

HEART FAILURE

HISTORY

Symptoms

- Dyspnea at rest or with exertion
- Chronic cough
- Wheezing
- Weight gain
- Fatigue
- Orthopnea
- Paroxysmal nocturnal dyspnea
- Nocturia (greater perfusion of renal vasculature)
- Peripheral edema
- Right upper quadrant pain (liver congestion)
- Anorexia/nausea (edema of the gut or impaired GI perfusion)
- Chest pain
- Palpitations (could indicate underlying arrhythmia)

Medical History

- Heart failure
 - Last echo
 - Dry weight
- Valve disease, new or worsening?
- Myocarditis
- Arrhythmia
- Ischemia/prior ischemic workup
- Follow with a cardiologist?
- Family history of heart failure or cardiac disease

Medications

- Current GDMT therapy
- Diuretic dose
- Missed or changed doses?
- Assess for medication precipitants

Assess for Precipitants

- Dietary/medication adherence or changes
- Uncontrolled hypertension
- Acute infection
- AKI
- Pulmonary embolism
- Toxins, alcohol, cocaine

PHYSICAL EXAM

Cardiac Exam

Inspection & Palpation

- Laterally displaced and/or enlarged PMI may indicate left ventricular hypertrophy

Auscultation

- To help determine S1 and S2, you may palpate the right carotid artery while auscultating the chest. S1 falls just before the carotid upstroke, and S2 follows the carotid upstroke

- Accentuated second heart sound may be heard in pulmonary hypertension

Abnormal Cardiac Auscultatory Findings

- Gallops are extra heart sounds (known as S3 and S4), which occur between S2 and S1
 - 3rd heart sound (systolic dysfunction) "S3" indicates ventricular dilation
 - 4th heart sound (hypertension and diastolic dysfunction, HCM) "S4" indicates atrium contracting against a stiff noncompliant left ventricle

- Murmurs usually indicate valvular pathology

Measuring the Jugular Venous Pressure

Done to assess a patient's intravascular volume status

- Elevated JVP is indicative of venous congestion

Pulmonary Exam

Auscultation

- "Cardiac asthma" can be characterized as rales (fine-pitched inspiratory crackles), wet crackles, or wheezing

Percussion

- Dullness at bases may indicate pleural effusions from fluid overload

Peripheral Exam

- Assess for warm or cold extremities, capillary refill

Pretibial & Pedal LE Pitting Edema

- Grade 1 = \leq 2 mm indentation that disappears immediately
- Grade 2 = 2-4 mm indentation that lasts 10-15 seconds
- Grade 3 = 4-6 mm indentation that can last more than a minute
- Grade 4 = 6-8 mm indentation that can last up to 2-5 minutes

Shifting Dullness Test for Ascites

- If significant ascites is present, this border will shift which may indicate congestion from volume overload status
- Hepatomegaly may indicate hepatic congestion from right-sided heart failure

WORKUP

Admission Orders

- Check NT-proBNP
 - ADHF unlikely if NT-proBNP <300 (NPV 98%), likely if >450 (>900 if age >50)
 - Difficult to interpret in CKD/dialysis. May be falsely low in obesity, HFrEF
- Ferritin: Screen for & treat iron deficiency in all HF pts independent of Hgb

Medications

- Avoid: CCB (esp. non-dihydropyridines), NSAIDs, flecainide
- Other Orders
 - Telemetry
 - 2g Na restricted diet
 - Daily standing weights (get the admission weight!)
 - Strict I/Os
 - DVT ppx

STAGING

ACCF/AHA Stages of HF		NYHA Classes of HF		Treatment
A	At high risk for HF but without structural heart disease or symptoms of heart failure	-	-	-
B	Structural heart disease but without signs or symptoms of HF	I	Only with vigorous activities (sports)	<ul style="list-style-type: none"> • Initiate ACE inhibitor • Mild restriction of sodium intake and physical activity • Start a loop diuretic if volume overloaded
C	Structural heart disease with prior or current symptoms of HF	II	With prolonged or moderate exertion (climbing stairs, carrying heavy packages)	<ul style="list-style-type: none"> • Initiate an ACE inhibitor AND a loop diuretic • Add a beta-blocker if no response
D	Refractory HF requiring specialized interventions	IV	At rest *will also be diaphoretic and have cool extremities at rest	<ul style="list-style-type: none"> • Add digoxin (to loop diuretic and ACE inhibitor) • Add spironolactone if still symptomatic

Early/Acute Management

- IV loop diuretics 2-2.5x home dose at infusion rate of 20mg/hr

	Furosemide	Torsemide	Bumetanide	Ethacrynic Acid
IV to oral dosing	1:2	1:1	1:1	1:1
PO Equivalent Across Medications	40mg	20mg	1mg	50mg
IV Equivalent Across Medications	20mg	20mg	1mg	50mg

- Diuretic naïve → IV furosemide 20-40mg 2-3 times daily (20-80 mg) if creatinine clearance is <60
- Refractory diuresis: metolazone 2.5-5mg (or chlorothiazide 500mg IV) administered 30min before loop diuretic. May need RHC to clarify hemodynamics or inotropes to augment diuresis. Acetazolamide (500mg daily) may also augment successful decongestion.
- Worsening renal function occurs in ~23% of pts being treated. Mild-mod “Cr bumps” are likely benign hemodynamic changes.
- Endpoints: target resolution of signs/symptoms of congestion. Daily weights & hemoconcentration are useful adjuncts.

- If acute pulmonary edema, NIPPV may improve mortality and reduce need for intubation
- Vasodilators: arterial/venous dilation can relieve symptoms
 - Consider esp. in severe HTN, acute MR, acute AR
 - Floor: isosorbide dinitrate, hydralazine, nitropaste, captopril; SDU/CCU: TNG, nitroprusside
- Guideline-Directed Medical Therapy (GDMT): if not in cardiogenic shock or new AKI, continue ACEi/ARB/ARNi and βB during ADHF (but do not newly initiate βB)

Guideline-Directed Medical Therapy (GDMT)

Many different methods for initiating and sequencing medications in GDMT

- Traditional Sequencing
 - Day 1: initiate ACE inhibitors and titrate to maximum tolerable dose
 - Week 1-2: initiate beta blocker and titrate to maximum tolerable dose
 - Week 3-4: initiate MRA and titrate to maximum tolerable dose
 - Week 4-7: switch to ARNi after 36-hour washout period of ACE inhibitor and titrate to maximum tolerable dose
 - Week 7-36: initiate SGLT2i and titrate to maximum tolerable dose
- Rapid Sequencing
 - Day 1: initiate ARNi, beta-blocker, MRA, and SGLT2i
 - Titrate beta blocker in 1-2-week intervals
 - Titrate ARNi and MRA in 3-4-week intervals
- Rapid Low Dose Approach
 - Day 1: initiate beta blocker and SGLT2i, increase doses every 1-2 days (every 2 weeks if outpatient)
 - Week 1-2: Initiate ARNI and titrate to maximum dose
 - Week 3-4: Initiate MRA and titrate to maximum dose

Pre-Discharge Optimization

- Document d/c weight & NT-proBNP
- Appointment with PCP and/or cardiology
- Diuretic plan: determine maintenance diuretic dose and provide specific instructions for taking additional rescue doses.
- Observe on maintenance dose and decide if needs K replacement

TRIALS & STUDIES

RALES (1999)

Spironolactone reduces morbidity and mortality in patients with class III or IV heart failure. It is contraindicated in renal failure.

CONSENSUS (1987) & SOLVD (1991)

ACE inhibitors reduce mortality, prolong survival, and alleviate symptoms in mild, moderate, and severe CHF.

COMET (2003)

Compared two β-blockers in the treatment of CHF and showed that carvedilol led to significant improvement in survival compared with metoprolol.

PARADIGM-HF (2014)

(ARNi)—sacubitril-valsartan was found to be superior to enalapril with respect to mortality and hospitalizations in patients with HFrEF.

PIONEER-HF (2019)

Sacubitril-valsartan is safe to initiate in patients with acute decompensated HF.

DAPA-HF (2019)

Among patients with HFrEF with or without diabetes, initiation of dapagliflozin decreased rates of CV death, worsening HF and all-cause mortality.

REFERENCES

- Heidenreich, P. A., Bozkurt, B., Aguilar, D., Allen, L. A., Byun, J. J., Colvin, M. M., Deswal, A., Drazen, M. H., Dunlay, S. M., Evers, G., Fang, J. C., Fedson, S. E., Fonarow, G. C., Hayek, S. S., Hernandez, A. F., Khazanie, P., Matsouaka, R. A., Sandhu, A. T., Teerlink, J. R., ... Yancy, C. W. (2022). 2022 AHA/ACC/HFSA guideline for the management of heart failure: A report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. *Circulation*, 145(18), e895-e1032. <https://doi.org/10.1161/CIR.0000000000001063>
- Kassab, A. S., Kearns, C. A., Sahadevan, J., & Cikes, M. (2025). Artificial intelligence in echocardiography: Machine learning and deep learning for improving heart failure care. *Heart Failure Reviews*. Advance online publication. <https://doi.org/10.1007/s10741-025-10481-7>
- Heidenreich, P. A., Bozkurt, B., Aguilar, D., Allen, L. A., Byun, J. J., Colvin, M. M., Deswal, A., Drazen, M. H., Dunlay, S. M., Evers, G., Fang, J. C., Fedson, S. E., Fonarow, G. C., Hayek, S. S., Hernandez, A. F., Khazanie, P., Matsouaka, R. A., Sandhu, A. T., Teerlink, J. R., ... Yancy, C. W. (2022). 2022 AHA/ACC/HFSA guideline for the management of heart failure: A report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. *Circulation*, 145(18), e895-e1032. <https://doi.org/10.1161/CIR.0000000000001063>